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Ion channel proteins are complex membrane proteins that 
control and regulate the transport of ions across cell membranes. 
Because of their involvement in several diseases,1 their potential 
use in biosensors,2 and their inherent difficulty of isolation, 
intense efforts have been devoted to the preparation of artificial 
ion channels.3 Here, we report a very simple, rapid, and efficient 
strategy for the preparation of such functional channel mol­
ecules. The strategy combines the versatility of solid phase 
peptide synthesis, the conformational predictability of peptidic 
molecules, and the solution synthesis of crown ethers with 
engineerable ion-binding abilities. 
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The designed molecule 1 is a 21 amino acid peptide composed 
of 15 L-leucines and six 21-crown-7 L-phenylalanines. These 
amino acids were chosen because they are hydrophobic and a 
peptide composed of these amino acids should be lipophilic 
enough to incorporate in a lipid bilayer membrane. Also, these 
amino acids have a high propensity to favor the a-helix 
conformation;4 therefore peptide 1 should adopt that conforma­
tion in solution. If the crown ether residues are incorporated 
judiciously at positions 2, 6, 9, 13, 16, and 20 of the sequence 
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Figure 1. (a, top) Axial projection of the helical structure of 1 showing 
the positions of the crown ether amino acid 3 (circled positions), (b, 
bottom) Schematic representation of the proposed active form of the 
artificial ion channel 1. 

of 1, the crown ethers are all located on the same side of the 
helix and form a channel for ions, as illustrated schematically 
in Figure 1, long enough to span a bilayer membrane. One 
additional reason for the use of crown ethers as the pore-forming 
moieties is the fact that their binding ability can be engineered 
to specific needs. In this case, the 21-crown-7 ligand was 
chosen because it binds alkali metal ions rather poorly, a 
necessary requirement to obtain ion channel activity. The 21 
amino acid peptide 1 was efficiently prepared in a 10% pure 
isolated overall yield following a segment condensation strategy 
we have reported5 using the oxime resin.6 The purification of 
1 was easily achieved by reverse phase HPLC, and it was 
characterized by 1H NMR and FAB mass spectrometry.7 

The ion transport ability of 1 as well as its shorter heptapep-
tide analogue 2, the /V-BOC-2 l-crown-7 L-phenylalanine methyl 
ester 3b, and the natural ion channel gramicidin A was 
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HOBT) to yield the 14-residue intermediate. The latter was deprotected 
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investigated using vesicles by the pH stat method.8 Briefly, a 
sample of unilamellar vesicles with an internal pH of 6.6 is 
diluted with an external solution, and the pH is raised to 7.6 to 
create a proton gradient.8 Then, ions and FCCP,9 a proton 
carrier, are added. In the absence of a transporter, no proton 
leakage is observed. Upon addition of a functional transporter, 
its transport ability is monitored by the release of protons 
required to maintain the electroneutrality across the vesicle wall. 
The protons are neutralized continuously to maintain a constant 
solution pH of 7.6. The graph of the volume of base added vs 
time allows the determination of the transport mode.8,10 Typical 
results are illustrated in Figure 2 for the case of Cs+. As it can 
be seen, the monomeric crown ether 3b and the heptapeptide 
2, too short to span the membrane, act as typical carriers by 
slowly and constantly transporting Cs+ at a similar rate. 
However, addition of the hexa-crown peptide 1 as well as 
gramicidin A led to a very rapid release of protons that reached 
saturation after less than 2 min. These results suggest that 1 
functions as an artificial ion channel which is as efficient as 
gramicidin A. Indeed, the obtention of a plateau at around 80% 
of the total value of protons entrapped is typical of channel 
molecules that do not migrate between vesicles contrarily to 
carriers like valinomycin.8" In addition, the turbidity of the 
vesicle solution is constant throughout the experiments, but the 
addition after 1 h of a surfactant, Triton X-100, results almost 
instantly in a clear solution by lysing all vesicles. This proved 
that peptide 1 does not act like a simple surfactant. This is 
further proved by the observation that no proton release was 
observed when 1 was added to the vesicle solution in the absence 
of ions (Figure 2b).'2 Furthermore, the hexa-crown peptide 1 
exhibited the same channel activity with Li+, Na+, K+, and Rb+. 
On the other hand, circular dichroism studies in trifluoroethanol 
demonstrated that 1 adopts a stable a-helix conformation, which 
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(m, 12H, ,8-CH2 of 3), 3.45-3.61 (m, 96H, crown CH2), 3.62 (s, 3H, OMe), 
3.65-3.78 (m, 24H, crown CH2), 3.95-4.09 (m, 24H, crown CH2), 4.15-
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(11) It is also possible that 1 does not empty all the vesicles because of 
the presence of some multilamellar liposomes whose interiors remain 
inaccessible to 1. 

(12) This experiment also demonstrates that choline cations from the 
buffer solution are not transported by 1. 
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Figure 2. (a) Cs+ transport ability of the monomeric crown ether 3b 
(A), the heptapeptide 2 (•), the 21-residue peptide 1 (•), and the natural 
ion channel gramicidin A (O) in vesicles using the pH state technique.8 

The transport ability is monitored by the release of protons from the 
vesicles as a function of time, (b) Control experiment showing that 
the transport results are not dependent on the order of addition of the 
components: (CD) FCCP, 1, then Cs+; (•) FCCP, Cs+, then 1. 

suggests that this conformation is the most stable for 1 in a 
low-polarity environment like a bilayer membrane. 

In conclusion, we have developed a novel type of functional 
artificial ion channel and demonstrated its effectiveness for the 
transport of ions. The synthetic strategy to prepare 1 is simple 
and rapid and allows further molecular engineering of this type 
of compound. Although the results described support the 
proposed working model in Figure lb, the precise mode of 
action of 1 has yet to be established. Work is currently under 
way to prepare analogues of 1 and to elucidate their transport 
mechanism. 
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